Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1558-1563, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621939

RESUMO

Macroporous resin column chromatography, MCI medium pressure column chromatography, and semi-preparative high performance liquid chromatography were employed to isolate the chemical components from the aqueous extract of the whole herb of Scindapsus officinalis. The structures of the compounds were identified based on the physical and chemical properties and the spectroscopic data. Ten compounds were isolated from the aqueous extract and identified as 3,4-dihydroxyphenylethyl-8-O-[ß-D-apiofuranosyl-(1→4)]-ß-D-glucopyranoside(1), alternamide B(2), 3,4-dihydroxyphenylethyl-O-ß-D-glucopyranoside(3), 1-(4-hydroxy)-phenylethyl-ß-D-galactopyranoside(4), 3,4-dihydroxyphenylethyl-8-O-[ß-D-apiofuranosyl-(1→2)]-ß-D-glucopyranoside(5), hydroxytyrosol-4-O-ß-D-glucopyranoside(6), 3,5-dihydroxyphenylethyl-3-O-ß-D-glucopyranoside(7), salidroside(8), dihydroisoquinolone(9), and 4-methoxybenzenepropanol-3-O-ß-D-glucopyranoside(10). Among them, compound 1 was a new one, and compounds 2-10 were obtained from S. officinalis for the first time. The RAW264.7 cells were exposed to lipopolysaccharide for the mode-ling of inflammation, and the cells were then used to examine anti-inflammatory activities of the compounds. The results showed that compounds 6 and 7 had strong anti-inflammatory activities, while compounds 1, 2, and 5 had moderate anti-inflammatory activities.


Assuntos
Anti-Inflamatórios , Anti-Inflamatórios/farmacologia , Cromatografia Líquida de Alta Pressão
2.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559216

RESUMO

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly. BA.2.87.1 is more resistant to neutralization by XBB.15-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines.

3.
mBio ; : e0075124, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591890

RESUMO

The rapid evolution of SARS-CoV-2 variants presents a constant challenge to the global vaccination effort. In this study, we conducted a comprehensive investigation into two newly emerged variants, BA.2.87.1 and JN.1, focusing on their neutralization resistance, infectivity, antigenicity, cell-cell fusion, and spike processing. Neutralizing antibody (nAb) titers were assessed in diverse cohorts, including individuals who received a bivalent mRNA vaccine booster, patients infected during the BA.2.86/JN.1-wave, and hamsters vaccinated with XBB.1.5-monovalent vaccine. We found that BA.2.87.1 shows much less nAb escape from WT-BA.4/5 bivalent mRNA vaccination and JN.1-wave breakthrough infection sera compared to JN.1 and XBB.1.5. Interestingly, BA.2.87.1 is more resistant to neutralization by XBB.1.5-monovalent-vaccinated hamster sera than BA.2.86/JN.1 and XBB.1.5, but efficiently neutralized by a class III monoclonal antibody S309, which largely fails to neutralize BA.2.86/JN.1. Importantly, BA.2.87.1 exhibits higher levels of infectivity, cell-cell fusion activity, and furin cleavage efficiency than BA.2.86/JN.1. Antigenically, we found that BA.2.87.1 is closer to the ancestral BA.2 compared to other recently emerged Omicron subvariants including BA.2.86/JN.1 and XBB.1.5. Altogether, these results highlight immune escape properties as well as biology of new variants and underscore the importance of continuous surveillance and informed decision-making in the development of effective vaccines. IMPORTANCE: This study investigates the recently emerged SARS-CoV-2 variants, BA.2.87.1 and JN.1, in comparison to earlier variants and the parental D614G. Varied infectivity and cell-cell fusion activity among these variants suggest potential disparities in their ability to infect target cells and possibly pathogenesis. BA.2.87.1 exhibits lower nAb escape from bivalent mRNA vaccinee and BA.2.86/JN.1-infected sera than JN.1 but is relatively resistance to XBB.1.5-vaccinated hamster sera, revealing distinct properties in immune reason and underscoring the significance of continuing surveillance of variants and reformulation of vaccines. Antigenic differences between BA.2.87.1 and other earlier variants yield critical information not only for antibody evasion but also for viral evolution. In conclusion, this study furnishes timely insights into the spike biology and immune escape of the emerging variants BA.2.87.1 and JN.1, thus guiding effective vaccine development and informing public health interventions.

4.
J Med Virol ; 96(3): e29520, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528837

RESUMO

The evolution of SARS-CoV-2 paired with immune imprinting by prototype messenger RNA (mRNA) vaccine has challenged the current vaccination efficacy against newly emerged Omicron subvariants. In our study, we investigated a cohort of macaques infected by SIV and vaccinated with two doses of bivalent Pfizer mRNA vaccine containing wildtype and BA.5 spikes. Using a pseudotyped lentivirus neutralization assay, we determined neutralizing antibody (nAb) titers against new XBB variants, i.e., XBB.1.5, XBB.1.16, and XBB.2.3, alongside D614G and BA.4/5. We found that compared to humans vaccinated with three doses of monovalent mRNA vaccine plus a bivalent booster, the monkeys vaccinated with two doses of bivalent mRNA vaccines exhibited relatively increased titers against XBB subvariants. Of note, SIV-positive dam macaques had reduced nAb titers relative to SIV-negative dams. Additionally, SIV positive dams that received antiretroviral therapy had lower nAb titers than untreated dams. Our study underscores the importance of reformulating the COVID-19 vaccine to better protect against newly emerged XBB subvariants as well as the need for further investigation of vaccine efficacy in individuals living with HIV-1.


Assuntos
COVID-19 , Vacinas de mRNA , Humanos , Animais , Macaca mulatta , Vacinas Combinadas , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , RNA Mensageiro , Anticorpos Antivirais
6.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
7.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194968

RESUMO

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia
8.
medRxiv ; 2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-37986806

RESUMO

Clinical data demonstrate an increased predisposition to cardiovascular disease (CVD) following severe COVID-19 infection. This may be driven by a dysregulated immune response associated with severe disease. Monocytes and vascular tissue resident macrophages play a critical role in atherosclerosis, the main pathology leading to ischemic CVD. Natural killer (NK) cells are a heterogenous group of cells that are critical during viral pathogenesis and are known to be dysregulated during severe COVID-19 infection. Their role in atherosclerotic cardiovascular disease has recently been described. However, the contribution of their altered phenotypes to atherogenesis following severe COVID-19 infection is unknown. We demonstrate for the first time that during and after severe COVID-19, circulating proinflammatory monocytes and activated NK cells act synergistically to increase uptake of oxidized low-density lipoprotein (Ox-LDL) into vascular tissue with subsequent foam cell generation leading to atherogenesis despite recovery from acute infection. Our data provide new insights, revealing the roles of monocytes/macrophages, and NK cells in COVID-19-related atherogenesis.

9.
Cell Rep Med ; 4(11): 101291, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37992689

RESUMO

Wang and colleagues show that immune imprinting impairs neutralizing antibody titers for bivalent mRNA vaccination against SARS-CoV-2 Omicron subvariants. Imprinting from three doses of monovalent vaccine can be alleviated by BA.5 or BQ-lineage breakthrough infection but not by a bivalent booster.1.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Infecções Irruptivas , RNA Mensageiro
10.
J Immunol ; 211(10): 1459-1467, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37931210

RESUMO

The impacts of the COVID-19 pandemic led to the development of several effective SARS-CoV-2 vaccines. However, waning vaccine efficacy as well as the antigenic drift of SARS-CoV-2 variants has diminished vaccine efficacy against SARS-CoV-2 infection and may threaten public health. Increasing interest has been given to the development of a next generation of SARS-CoV-2 vaccines with increased breadth and effectiveness against SARS-CoV-2 infection. In this Brief Review, we discuss recent work on the development of these next-generation vaccines and on the nature of the immune response to SARS-CoV-2. We examine recent work to develop pan-coronavirus vaccines as well as to develop mucosal vaccines. We further discuss challenges associated with the development of novel vaccines including the need to overcome "original antigenic sin" and highlight areas requiring further investigation. We place this work in the context of SARS-CoV-2 evolution to inform how the implementation of future vaccine platforms may impact human health.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Anticorpos Amplamente Neutralizantes , Pandemias , SARS-CoV-2 , Anticorpos Antivirais , Anticorpos Neutralizantes
11.
Cell Rep ; 42(10): 113193, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37777967

RESUMO

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the efficacy of vaccination efforts against coronavirus disease 2019 (COVID-19). The Omicron XBB lineage of SARS-CoV-2 has presented dramatic evasion of neutralizing antibodies stimulated by mRNA vaccination and COVID-19 convalescence. XBB.1.16, characterized by two mutations relative to the dominating variant XBB.1.5, i.e., E180V and K478R, has been on the rise globally. In this study, we compare the immune escape of XBB.1.16 with XBB.1.5, alongside ancestral variants D614G, BA.2, and BA.4/5. We demonstrate that XBB.1.16 is strongly immune evasive, with extent comparable to XBB.1.5 in bivalent-vaccinated healthcare worker sera, 3-dose-vaccinated healthcare worker sera, and BA.4/5-wave convalescent sera. Interestingly, the XBB.1.16 spike is less fusogenic than that of XBB.1.5, and this phenotype requires both E180V and K478R mutations to manifest. Overall, our findings emphasize the importance of the continued surveillance of variants and the need for updated mRNA vaccine formulations.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Formação de Anticorpos , Convalescença , Evasão da Resposta Imune , SARS-CoV-2 , Anticorpos Antivirais
12.
Proc Natl Acad Sci U S A ; 120(41): e2220403120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37796985

RESUMO

As SARS-CoV-2 variants of concern (VoCs) that evade immunity continue to emerge, next-generation adaptable COVID-19 vaccines which protect the respiratory tract and provide broader, more effective, and durable protection are urgently needed. Here, we have developed one such approach, a highly efficacious, intranasally delivered, trivalent measles-mumps-SARS-CoV-2 spike (S) protein (MMS) vaccine candidate that induces robust systemic and mucosal immunity with broad protection. This vaccine candidate is based on three components of the MMR vaccine, a measles virus Edmonston and the two mumps virus strains [Jeryl Lynn 1 (JL1) and JL2] that are known to provide safe, effective, and long-lasting protective immunity. The six proline-stabilized prefusion S protein (preS-6P) genes for ancestral SARS-CoV-2 WA1 and two important SARS-CoV-2 VoCs (Delta and Omicron BA.1) were each inserted into one of these three viruses which were then combined into a trivalent "MMS" candidate vaccine. Intranasal immunization of MMS in IFNAR1-/- mice induced a strong SARS-CoV-2-specific serum IgG response, cross-variant neutralizing antibodies, mucosal IgA, and systemic and tissue-resident T cells. Immunization of golden Syrian hamsters with MMS vaccine induced similarly high levels of antibodies that efficiently neutralized SARS-CoV-2 VoCs and provided broad and complete protection against challenge with any of these VoCs. This MMS vaccine is an efficacious, broadly protective next-generation COVID-19 vaccine candidate, which is readily adaptable to new variants, built on a platform with a 50-y safety record that also protects against measles and mumps.


Assuntos
COVID-19 , Sarampo , Caxumba , Cricetinae , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Imunoglobulina G , Mesocricetus , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
13.
Emerg Microbes Infect ; 12(2): 2270069, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819267

RESUMO

Immune evasion by SARS-CoV-2 paired with immune imprinting from monovalent mRNA vaccines has resulted in attenuated neutralizing antibody responses against Omicron subvariants. In this study, we characterized two new XBB variants rising in circulation - EG.5.1 and XBB.2.3, for their neutralization and syncytia formation. We determined the neutralizing antibody titers in sera of individuals that received a bivalent mRNA vaccine booster, BA.4/5-wave infection, or XBB.1.5-wave infection. Bivalent vaccination-induced antibodies neutralized ancestral D614G efficiently, but to a much less extent, two new EG.5.1 and XBB.2.3 variants. In fact, the enhanced neutralization escape of EG.5.1 appeared to be driven by its key defining mutation XBB.1.5-F456L. Notably, infection by BA.4/5 or XBB.1.5 afforded little, if any, neutralization against EG.5.1, XBB.2.3 and previous XBB variants - especially in unvaccinated individuals, with average neutralizing antibody titers near the limit of detection. Additionally, we investigated the infectivity, fusion activity, and processing of variant spikes for EG.5.1 and XBB.2.3 in HEK293T-ACE2 and CaLu-3 cells but found no significant differences compared to earlier XBB variants. Overall, our findings highlight the continued immune evasion of new Omicron subvariants and, more importantly, the need to reformulate mRNA vaccines to include XBB spikes for better protection.


Assuntos
COVID-19 , Fusão de Membrana , Humanos , COVID-19/prevenção & controle , Células HEK293 , Evasão da Resposta Imune , SARS-CoV-2/genética , Anticorpos Neutralizantes , Vacinas de mRNA , Anticorpos Antivirais
14.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745517

RESUMO

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and the XBB-lineage variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose vaccinated and bivalent vaccinated healthcare workers, XBB.1.5-wave infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant Spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially differences conformational stability of BA.2.86 Spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.

15.
Front Genome Ed ; 5: 1231656, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520399

RESUMO

Severe respiratory syndrome coronavirus 2 (SARS-CoV-2) and other coronaviruses depend on host factors for the process of viral infection and replication. A better understanding of the dynamic interplay between viral pathogens and host cells, as well as identifying of virus-host dependencies, offers valuable insights into disease mechanisms and informs the development of effective therapeutic strategies against viral infections. This review delves into the key host factors that facilitate or hinder SARS-CoV-2 infection and replication, as identified by CRISPR/Cas9-based screening platforms. Furthermore, we explore CRISPR/Cas13-based gene therapy strategies aimed at targeting these host factors to inhibit viral infection, with the ultimate goal of eradicating SARS-CoV-2 and preventing and treating related coronaviruses for future outbreaks.

16.
Viruses ; 15(7)2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37515289

RESUMO

Coronaviruses are known to cross species barriers, and spill over among animals, from animals to humans, and vice versa. SARS-CoV-2 emerged in humans in late 2019. It is now known to infect numerous animal species, including companion animals and captive wildlife species. Experimental infections in other animals have established that many species are susceptible to infection, with new ones still being identified. We have developed an enzyme-linked immunosorbent assay (ELISA) for detecting antibodies to SARS-CoV-2 nucleocapsid (N) and spike (S) proteins, that is both sensitive and specific. It can detect S antibodies in sera at dilutions greater than 1:10,000, and does not cross-react with antibodies to the other coronaviruses tested. We used the S antibody ELISA to test serum samples collected from 472 deer from ten sites in northeastern Ohio between November 2020 and March 2021, when the SARS-CoV-2 pandemic was first peaking in humans in Ohio, USA. Antibodies to SARS-CoV-2 were found in serum samples from every site, with an overall positivity rate of 17.2%; we further compared the viral neutralizing antibody titers to our ELISA results. These findings demonstrate the need to establish surveillance programs to monitor deer and other susceptible wildlife species globally.


Assuntos
COVID-19 , Cervos , Humanos , Animais , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/veterinária , Ohio/epidemiologia , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática/métodos , Animais Selvagens , Glicoproteína da Espícula de Coronavírus
17.
Cell Rep Med ; 4(5): 101049, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37148877

RESUMO

New Omicron subvariants continue to emerge throughout the world. In particular, the XBB subvariant, which is a recombinant virus between BA.2.10.1.1 and BA.2.75.3.1.1.1, as well as the BA.2.3.20 and BR.2 subvariants that contain mutations distinct from BA.2 and BA.2.75, are currently increasing in proportion of variants sequenced. Here we show that antibodies induced by 3-dose mRNA booster vaccination as well as BA.1- and BA.4/5-wave infection effectively neutralize BA.2, BR.2, and BA.2.3.20 but have significantly reduced efficiency against XBB. In addition, the BA.2.3.20 subvariant exhibits enhanced infectivity in the lung-derived CaLu-3 cells and in 293T-ACE2 cells. Overall, our results demonstrate that the XBB subvariant is highly neutralization resistant, which highlights the need for continued monitoring of the immune escape and tissue tropism of emerging Omicron subvariants.


Assuntos
Anticorpos , Humanos , Células HEK293 , Imunização Secundária , Mutação , RNA Mensageiro
19.
Cell Rep ; 42(5): 112443, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37104089

RESUMO

Omicron subvariants continuingly challenge current vaccination strategies. Here, we demonstrate nearly complete escape of the XBB.1.5, CH.1.1, and CA.3.1 variants from neutralizing antibodies stimulated by three doses of mRNA vaccine or by BA.4/5 wave infection, but neutralization is rescued by a BA.5-containing bivalent booster. CH.1.1 and CA.3.1 show strong immune escape from monoclonal antibody S309. Additionally, XBB.1.5, CH.1.1, and CA.3.1 spike proteins exhibit increased fusogenicity and enhanced processing compared with BA.2. Homology modeling reveals the key roles of G252V and F486P in the neutralization resistance of XBB.1.5, with F486P also enhancing receptor binding. Further, K444T/M and L452R in CH.1.1 and CA.3.1 likely drive escape from class II neutralizing antibodies, whereas R346T and G339H mutations could confer the strong neutralization resistance of these two subvariants to S309-like antibodies. Overall, our results support the need for administration of the bivalent mRNA vaccine and continued surveillance of Omicron subvariants.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Formação de Anticorpos , Mutação/genética , RNA Mensageiro/genética , Vacinas Combinadas , Anticorpos Antivirais
20.
Eur J Med Chem ; 254: 115380, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37075625

RESUMO

The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.


Assuntos
COVID-19 , Papaína , Humanos , Papaína/química , Papaína/genética , Papaína/metabolismo , SARS-CoV-2 , Inibidores de Proteases/farmacologia , Células CACO-2 , Pandemias , Peptídeo Hidrolases/metabolismo , Antivirais/farmacologia , Antivirais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...